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bstract

Applications of second-order kinetic models to adsorption systems were reviewed. An overview of second-order kinetic expressions is described
n this paper based on the solid adsorption capacity. An early empirical second-order equation was applied in the adsorption of gases onto a solid.
similar second-order equation was applied to describe ion exchange reactions. In recent years, a pseudo-second-order rate expression has been
idely applied to the adsorption of pollutants from aqueous solutions onto adsorbents. In addition, the earliest rate equation based on the solid

dsorption capacity is also presented in detail.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Predicting the rate at which adsorption takes place for a
iven system is probably the most important factor in adsorption
ystem design, with adsorbate residence time and the reac-
or dimensions controlled by the system’s kinetics. A number
f adsorption processes for pollutants have been studied in an
ttempt to find a suitable explanation for the mechanisms and
inetics for sorting out environment solutions. In order to inves-
igate the mechanisms of adsorption, various kinetic models
ave been suggested. In recent years, adsorption mechanisms
nvolving kinetics-based models have been reported. Numerous
inetic models have described the reaction order of adsorption
ystems based on solution concentration. These include first-
rder [1] and second-order [2] reversible ones, and first-order
3] and second-order [4] irreversible ones, pseudo-first-order
5] and pseudo-second-order ones [6] based on the solution
oncentration. On the other hand, reaction orders based on the
apacity of the adsorbent have also been presented, such as
agergren’s first-order equation [7], Zeldowitsch’s model [8],
nd Ho’s second-order expression [9–12].
This paper describes an earlier adsorption rate equation based
n the solid capacity for a system of liquids and solids [7], the
lovich equation for adsorption of gases onto a solid and apply-
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ng a second-order rate equation for gas/solid and solution/solid
dsorption systems [8], a second-order rate expression for ion
xchange reactions [13], and a pseudo-second-order expression
9].

. Modeling

.1. Second-order rate equation

A linear form of the typical second-order rate equation is

1

Ct
= k2t + 1

C0
, (1)

here Ct is the equilibrium concentration (mg/dm3), C0 the ini-
ial concentration (mg/dm3), t the time (min), and k2 is the rate
onstant (dm3/mg min).

Early applied second-order rate equations in solid/liquid sys-
ems described reactions between soil and soil minerals [14,15].
thers applied which the second-order rate equation included

he adsorption of fluoride onto acid-treated spent bleaching earth
16]; and the adsorption of water using the dealumination of

ZSM-5 zeolite by thermal treatment [17]. Moreover, Varsh-
ey et al. reported the kinetics of adsorption of the pesticide,
hosphamidon, on beads of an antimony(V) phosphate cation
xchanger during the first 15 min [18].
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.2. Lagergren’s equation

As early as 1898 [7], Lagergren described liquid–solid phase
dsorption systems, which consisted of the adsorption of oxalic
cid and malonic acid onto charcoal. Lagergren’s first-order rate
quation is the earliest known one describing the adsorption rate
ased on the adsorption capacity. It is summarised as follows:

dx

dt
= k(X − x), (2)

here X and x (mg/g) are the adsorption capacities at equilibrium
nd at time t (min), respectively, and k is the rate constant of the
rst-order adsorption (1/min).

Eq. (2) was integrated with the boundary conditions of t = 0
o t = t and x = 0 to x = x to yield

n

(
X

X − x

)
= kt (3)

nd

= X(1 − e−kt). (4)

q. (3) may be rearranged to a linear form:

og(X − x) = log(X) − k

2.303
t. (5)

n order to distinguish kinetics equations based on concentra-
ions of solution from adsorption capacities of solids, Lager-
ren’s first-order rate equation has been called pseudo-first-order
10,19–22]. An early known application of Lagergren’s kinetics
quation to adsorption was undertaken by Trivedi et al. [23] for
he adsorption of cellulose triacetate from chloroform onto cal-
ium silicate. During the last four decades, the kinetics equation
as been widely applied to the adsorption of pollutants from
queous solutions [24].

.3. Elovich’s equation

Elovich’s equation is another rate equation based on the
dsorption capacity. In 1934 [8], the kinetic law of chemisorp-
ion was established though the work of Zeldowitsch. The rate of
dsorption of carbon monoxide on manganese dioxide decreas-
ng exponentially with an increase in the amount of gas adsorbed
as described by Zeldowitsch [8]. It has commonly been called

he Elovich equation in the following years:

dq

dt
= a e−αq, (6)

here q is the quantity of gas adsorbed during the time t, α the
nitial adsorption rate, and a is the desorption constant during any
ne experiment. The integrated form of Eq. (6) can be written
n the form

=
(

2.3

α

)
log(t + t0) −

(
2.3

α

)
log t0 (7)
ith

0 = 1

αa
. (8)

o

θ

terials B136 (2006) 681–689

ith a correctly chosen t0, the plot of q as a function of log(t + t0)
hould yield a straight line with a slope of 2.3/α; Eq. (8) then
ives a which obviously represents the initial rate of adsorption
or q = 0. The test thus involves one single disposable parameter,
0, which is found by trial; if t0 is too small, the curve is con-
ex, and if t0 is too large, it is concave to the axis of log(t + t0)
25]. This Elovich equation is commonly used to determine the
inetics of chemisorption of gases onto heterogeneous solids,
nd is quite restricted, as it only describes a limiting property
ltimately reached by the kinetic curve [26].

To simplify Elovich’s equation, Chien and Clayton [27]
ssumed that aαt � 1 and by applying the boundary conditions
f q = 0 at t = 0 and q = q at t = t, then Eq. (6) becomes [28]:

= α ln(aα) + α ln(t). (9)

hus, the constants can be obtained from the slope and the inter-
ept of a straight line plot of q against ln(t). Recently, Rudzinski
nd Panczyk [29] published an exhaustive analysis of existing
ationalizations for the Elovich equation found in the literature
or the kinetics of adsorption onto heterogeneous surfaces.

In earlier years, numerous applications of Elovich’s equa-
ion to the adsorption of gases onto solid systems were reported
30,31]. During the last three decades, the equation has been
idely used to describe the kinetics of adsorption of gases
nto solids [29,32–35]. The most frequently cited paper for the
pplication of Elovich’s equation to adsorption systems was an
lternative to Elovich’s equation for kinetics of adsorption of
ases onto solids [33]. An earlier application of the rate equa-
ion of Elovich was the exchange of 32P between the goethite
�-FeOOH) crystal surface and the solution phase [36]. The
pplication of Elovich equation to the kinetics of phosphate
elease and adsorption in soils [27] is the most frequently cited
aper on the adsorption in solution/solid systems. In addition, the
lovich equation has also been used to describe the adsorption
f pollutants from aqueous solutions in recent years [19,37,38].

.4. Ritchie’s equation

In 1977 [33], Ritchie reported a model for the adsorption of
aseous systems. Assumptions were made as follows: θ is the
raction of surface sites which are occupied by an adsorbed gas,
the number of surface sites occupied by each molecule of the

dsorbed gas, and α is the rate constant. Assuming that the rate
f adsorption depends solely on the fraction of sites which are
noccupied at time t, then

dθ

dt
= α(1 − θ)n. (10)

q. (10) integrates to

1
n−1 = (n − 1)αt + 1 for n �= 1 (11)
(1 − θ)

r

= 1 − e−αt for n = 1. (12)
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t is assumed that no site is occupied at t = 0. When introducing
he amount of adsorption, q, at time t, Eq. (11) becomes

qn−1∞
(q∞ − q)n−1 = (n − 1)αt + 1 (13)

nd similarly Eq. (12) becomes

= q∞(1 − e−αt), (14)

here q∞ is the amount of adsorption after an infinite time.
In earlier years, Sobkowsk and Czerwiński [39] presented a

ate equation for the reaction of carbon dioxide adsorption onto
platinum electrode:

dθ

dt
= k(1 − θ)n, (15)

here θ = Γ /Γ ∞ denotes the surface coverage by the reaction
roducts, Γ and Γ ∞ the surface concentrations at time t and after
ompletion of the reaction, respectively, k the rate constant, and
is the order of the reaction.
When n = 1,

ln(1 − θ) = k1t. (16)

hen n = 2,

θ

1 − θ
= k2t. (17)

obkowsk and Czerwiński [39] concluded that the first-order
s only for low surface concentrations of a solid, confirmed by
sing plots of −ln(1 − θ) versus time as Eq. (16), and the second-
rder is for higher concentrations of a solid, confirmed by using
lots of θ/(1 − θ) versus time as Eq. (17). In addition, Trasatti and
ormaro reported that the plot of −ln(1 − θ) versus time is not

inear for very long times, when the coverage reaches a station-
ry value for the adsorption of glycolaldehyde onto a platinum
lectrode [40]. In the case of the sorption of basic dyes from
queous solution onto sphagnum moss peat, Ho and McKay
22] found that log(qe − qt) versus time was only applicable in
he early stage of the reaction. In the case of adsorption of gases
nto a solid surface, Sobkowsk and Czerwiński reported that
he first-order rate equation could only be used for a low surface
oncentration of gases adsorbed onto a solid surface, and the
econd-order rate evaluation could be applied to higher concen-
rations [39].

Several adsorption results were examined using the Ritchie
quation [33]. In the early years, the Elovich equation was
pplied to describe gas and vapour adsorption systems, such
s the adsorption of carbon monoxide during the oxidation
f polyvinylidene chloride [41], the chemisorption of hydro-
en onto graphon [42], the measuring of the kinetics of the
hemisorption of H2 onto a MoS2 + Al2O3 catalyst [43], and the
dsorption of water vapour by Vycor fibre [44]. These systems

id not fit the Elovich equation very well. Ritchie [33] examined
hese results using Eq. (13) when n = 2. Eq. (13) becomes

q∞
(q∞ − q)

= αt + 1. (18)

a

2

w

terials B136 (2006) 681–689 683

he value for q∞ is obtained from the intercept at (1/t) = 0 on
plot of (1/q) against (1/t). Ritchie found a good linear rela-

ionship between t and q∞/(q∞ − q) for the results of Austin et
l. [41], Bansal et al. [42], Deitz and Turner [44], and Samuel
nd Yeddanapalli [43]. In recent years, the Ritchie equation
as also been applied to solution/solid adsorption systems, for
xample, the adsorption of cadmium ions onto bone char [37],
nd the adsorption of Cd(II) onto acid-treated jackfruit peel
45].

.5. Second-order rate expressions

In 1984 [13], Blanchard et al. presented the overall exchange
eaction of NH4

+ ions fixed in zeolite by divalent metallic ions
n the solution which can be written:

(2NH4
+) + M2+ → Z(M2+) + 2NH4

+, (19)

here Z(2NH4
+) and Z(M2+) are the amounts of NH4

+ ion fixed in

he zeolite (meq/g), and M2+ and NH4
+ are the concentrations

meq/dm3).
The authors assumed that the metallic concentration varies

ery slightly during the first hours, and the kinetic order is two
ith respect to the number (n0 − n) of available sites for the

xchange; thus, the differential equation can be written as

dn

dt
= K[n0 − n]2 (20)

nd integration gives

1

(n0 − n)
− α = Kt, (21)

here n is the amount of M2+ fixed or the amount of NH4
+

eleased at each instant, n0 the exchange capacity, and K is the
ate constant.

Considering the boundary condition n = 0 for t = 0, it follows
hat α = 1/n0. By plotting 1/(n0 − n) as a function of time, a
traight line must be obtained, the slope of which gives the rate
onstant, K, and the intercept gives the exchange capacity. In
ecent years, the Blanchard second-order expression has been
sed to describe the kinetics of exchange processes between
odium ions from zeolite A and cadmium, copper, and nickel
ons from solutions [46].

An expression of second-order rate based on solid capacity
as also been presented for the kinetics of adsorption of diva-
ent metal ions onto peat [9–12]. Peat contains polar functional
roups such as aldehydes, ketones, acids, and phenolics. These
roups can be involved in chemical bonding and are respon-
ible for the cation exchange capacity of the peat. Thus, the
eat–copper reaction may be represented in two ways [47]:

P− + Cu2+ ↔ CuP2 (22)
nd

HP + Cu2+ ↔ CuP2 + 2H+, (23)

here P− and HP are polar sites on the peat surface.
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In an attempt to present the equation representing adsorption
f divalent metals onto sphagnum moss peat during agitation,
he assumption was made that the process may be second-order
nd that chemisorption occurs involving valency forces through
haring or the exchange of electrons between the peat and diva-
ent metal ions as covalent forces. The rate of the second-order
eaction may be dependent on the amount of divalent metal ions
n the surface of the peat, and the amount of divalent metal
ons adsorbed at equilibrium [9,12]. The rate expression for the
dsorption described by Eqs. (24) and (25) is

d(P)t
dt

= k[(P)0 − (P)t]
2 (24)

r

d(HP)t
dt

= k[(HP)0 − (HP)t]
2, (25)

here (P)t and (HP)t are the number of active sites occupied
n the peat at time, t, and (P)0 and (HP)0 are the number of
quilibrium sites available on the peat.

The driving force, (qe − qt), is proportional to the available
raction of active sites. The kinetic rate equations can be rewrit-
en as follows:

dqt

dt
= k(qe − qt)

2, (26)

here k is the rate constant of adsorption (g/mg min), qe the
mount of divalent metal ions adsorbed at equilibrium (mg/g),
nd qt is the amount of divalent metal ions on the surface of the
dsorbent at any time, t (mg/g).

Separating the variables in Eq. (26) gives

dqt

(qe − qt)2 = k dt (27)

nd integrating this for the boundary conditions t = 0 to t = t and
t = 0 to qt = qt, gives

t = q2
ekt

1 + qekt
(28)

hich is the integrated rate law for a second-order reaction. Eq.
28) can be rearranged to obtain

t = t
1

kq2
e

+ t
qe

(29)

hich has a linear form of

t

qt

= 1

kq2
e

+ 1

qe
t (30)

nd

= kq2
e , (31)

here h is the initial adsorption rate (mg/g min) as qt/t

pproaches 0, and Eq. (29) can be rearranged to obtain

t = t
1
h

+ t
qe

(32)
aterials B136 (2006) 681–689

and

t

qt

= 1

h
+ 1

qe
t. (33)

The rate of a reaction is defined as the change in concentration of
a reactant or product per unit time. Concentrations of products
do not appear in the rate law because the reaction rate is studied
under conditions where the reverse reactions do not contribute
to the overall rate. The reaction order and rate constant must
be determined by experiments. In order to distinguish the kinet-
ics equation based on the concentration of a solution from the
adsorption capacity of solids, this second-order rate equation
has been called a pseudo-second-order one [9]. The pseudo-
second-order model constants can be determined experimentally
by plotting t/qt against t. Although there are many factors which
influence the adsorption capacity, including the initial adsorbate
concentration [12,48–51], the reaction temperature [10,12,50],
the solution pH value [52,53], the adsorbent particle size [48] and
dose [12,48,51], and the nature of the solute [12,54], a kinetic
model is concerned only with the effect of observable parame-
ters on the overall rate. The pseudo-second-order expression has
been successfully applied to the adsorption of metal ions, dyes,
herbicides, oils, and organic substances from aqueous solutions
(Table 1).

Recently, a theoretical analysis of the pseudo-second-order
model was reported [139]. The advantage of the Azizian deriva-
tion is that when the initial concentration of solute is low, then
the adsorption process obeys the pseudo-second-order model.
Conversely pseudo-first-order models can be applied to higher
initial concentrations. The rate constant of the pseudo-second-
order model is a complex function of the initial concentration of
the solute.

Table 2 shows a comparison of second-order rate equations
of Sobkowsk and Czerwiński [39], Ritchie [33], Blanchard et al.
[13], and Ho [9]. In earlier years, Sobkowsk and Czerwiński used
the second-order rate equation based on the adsorption capacity
of a solid for higher concentrations of solids with the rate of
reaction of carbon dioxide adsorption onto a platinum electrode
[39]. Ritchie presented a second-order empirical equation to test
the adsorption of gases onto solids [33]. Blanchard et al. reported
a similar rate equation for the exchange reaction of NH4

+ ions
fixed in zeolite by divalent metallic ions in solution [13]. Ho
described adsorption which included chemisorption and gave
a different idea of the second-order equation called a pseudo-
second-order rate expression [9].

In many cases, the equilibrium adsorption capacity is
unknown, and chemisorption tends to become immeasurably
slow and the amount adsorbed is still significantly smaller than
the equilibrium amount [140]. On the other hand, achieving equi-
librium takes a long time in some adsorption systems [141–143].
However, the pseudo-second-order equation has the following
advantages: it does not have the problem of assigning an effec-
tive adsorption capacity, i.e., the adsorption capacity, the rate

constant of pseudo-second-order, and the initial adsorption rate
all can be determined from the equation without knowing any
parameter beforehand.
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Table 1
Pseudo-second-order kinetic model of various related systems from the literature

Adsorbent Adsorbate References

2-Mercaptobenzimidazole
clay

Hg(II) [55]

Activated carbon 2,4-Dichlorophenoxy-acetic
acid

[56]

Activated carbon Cd(II) [57]
Activated carbon Cd(II) [58]
Activated carbon Cd(II), Ni(II) [59]
Activated carbon Congo red [60]
Activated carbon Direct blue 2B, Direct

green B
[61]

Activated carbon Hg(II) [62]
Activated carbon Hg(II) [63]
Activated carbon Methylene blue [64]
Activated carbon Paraquat dichloride [65]
Activated carbon Co(II) [66]
Activated carbon Pb(II) [67]
Activated carbon Pb(II) [68]
Activated carbon Pb(II), Hg(II), Cd(II),

Co(II)
[69]

Activated clay Basic red 18, Acid blue 9 [70]
Aeromonas caviae Cr(VI) [71]
Alginate Ni(II) [72]
Anaerobic granular sludges Ni(II), Co(II) [73]
Aspergillus niger Acid blue 29 [74]
Aspergillus niger Basic blue 9 [75]
Aspergillus niger Congo red [76]
Aspergillus niger Pb(II), Cd(II), Cu(II), Ni(II) [77]
Azadirachta indica (Neem)

leaf
Congo red [78]

Azadirachta indica (Neem)
leaf

Pb(II) [79]

Baker’s yeast Cd(II) [80]
Banana stalk Musa

paradisiacal
Hg(II) [81]

Beech leaves Cd(II) [11]
Bentonite Acid red 57, Acid blue 294 [82]
Bi2O3 Cr(VI) [11]
Blast furnace slag, dust,

sludge, carbon slurry
Chlorophenols [83]

Bottom ash Cu(II), Pb(II) [11]
Calabrian pine bark Zn(II), Pb(II) [84]
Calcined alunite Phosphorus [85]
Calcined Mg–Al–CO3

hydrotalcite
Cr(VI) [86]

Cassava waste biomass Cu(II), Cd(II) [87]
Chitin Cd(II) [88]
Chitin, chitosan, Rhizopus

arrhizus
Cr(VI), Cu(II) [38]

Chitosan Cu(II) [89]
Chitosan Ni(II) [90]
Clinoptilolite Pb(II) [91]
Coconut coir pith 2,4-Dichlorophenol [92]
Coconut coir pith Cr(VI) [93]
Coir Cu(II), Pb(II) [94]
Cypress leaves Pb(II) [11]
Date pits Methylene blue [95]
Date pits Phenol [96]
Diatomaceous clay Methylene blue [97]
Dolomite Phosphate [98]
Fly ash Congo red [99]
Fly ash Omega chrome red ME,

o-cresol, p-nitrophenol
[100]

Fly ash Victoria blue, OCL, PNP,
OCRME

[11]

Table 1 (Continued)

Adsorbent Adsorbate References

Grafted silica Pb(II), Cu(II) [101]
Grape stalks Cr(VI) [102]
Iron oxide-coated sand As(V), As(III) [103]
Jordanian low-grade

phosphate
Pb(II) [104]

Juniper fiber Cd(II) [105]
Juniper fiber Phosphorus [106]
Mesoporous silicate Phosphate [107]
Mg–Al–CO3 hydrotalcite Cr(VI) [108]
Microcystis Ni(II), Cr(VI) [109]
Microporous titanosilicate

ETS-10
Pb(II) [110]

Mixed clay/carbon Acid blue 9 [111]
Mucor rouxii Pb(II), Cd(II), Ni(II), Zn(II) [112]
Myriophyllum spicatum Pb(II), Zn(II), Cd(II) [113]
Na-bentonite Oil [114]
Oil shale 4-Nitrophenol [115]
Peat Basic blue 69, Acid blue 25 [11]
Peat Basic green 4, Basic violet

4, Basic blue 24
[116]

Peat Cu(II) [117]
Peat Cu(II) [11]
Peat Cu(II) [118]
Peat-resin particle Basic magenta, Basic

brilliant green
[119]

Perlite Cd(II) [120]
Perlite Methylene blue [121]
Pith Basic red 22, Acid red 114 [122]
Reed leaves Cd(II) [11]
Rhizopus oligosporus Cu(II) [123]
Rhodotorula aurantiaca Pb(II) [124]
Sago Cu(II), Pb(II) [125]
Sawdust Cd(II), Pb(II) [126]
Sawdust Phenol [127]
Schizomeris leibleinii Pb(II) [128]
Sepiolite Pb(II) [129]
Spent grain Pb(II), Cd(II) [130]
Sphagnum moss peat Chrysoidine, Astrazon blue,

Astrazone blue
[22]

Sphagnum moss peat Cu(II), Ni(II) [131]
Sphagnum moss peat Cu(II), Ni(II), Pb(II) [12]
Sugar beet pulp Pb(II) [132]
Sugar beet pulp Pb(II), Cu(II), Zn(II),

Cd(II), Ni(II)
[133]

Surfactant-modified
clinoptilolite

Phosphate [134]

TNSAC Phosphate [11]
Tree fern Basic red 13 [135]
Tree fern Cd(II) [136]
Tree fern Cu(II) [49]
Tree fern Pb(II) [50]
Vermiculite Cd(II) [137]
Waste tyres, sawdust Cr(VI) [138]
Wollastonite Ni(II) [11]
Wood Basic blue 69, Acid blue 25 [21]
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Table 2
Comparison of second-order models

Author Year Linear form Plot

Sobkowsk and Czerwiński 1974 θ
1−θ

= k2t
θ

1−θ
vs. t

Ritchie 1977 q∞
q∞−q

= αt + 1 q∞
q∞−q

vs. t

Blanchard et al. 1984 1
n −n

− α = Kt 1
n −n

vs. t

H

3

c
p
i
t
g
t
i
c
e
w
t
b
r
w
t
t
b
r

R

tion behavior of diamond-like carbon coatings: time and speed effects,
0 0

o 1995 t
qt

= 1
k2q2

e
+ 1

qe
t t

qt
vs. t

. Conclusion

Adsorption rate equations have considered the adsorption
apacities of solids since Lagergren’s first-order equation was
resented. Several rate equations were reported with the same
dea in the following years. In earlier years, Elovich’s equa-
ion and Ritchie’s equation were applied to the adsorption of
ases onto solid faces. Later, application of these equations
o the adsorption of pollutants from aqueous solutions were
nvestigated. A second-order rate equation was used to describe
hemisorption for the adsorption of gases used to describe ion
xchange reactions. The pseudo-second-order rate expression
as used to describe chemisorption involving valency forces

hrough the sharing or exchange of electrons between the adsor-
ent and adsorbate as covalent forces, and ion exchange. In
ecent years, the pseudo-second-order rate expression has been
idely applied to the adsorption of pollutants from aqueous solu-

ions. The advantage of using this model is that there is no need
o know the equilibrium capacity from the experiments, as it can
e calculated from the model. In addition, the initial adsorption
ate can also be obtained from the model.
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